Joint Maximum Purity Forest with Application to Image Super-Resolution
نویسندگان
چکیده
In this paper, we propose a novel random-forest scheme, namely Joint Maximum Purity Forest (JMPF), for classification, clustering, and regression tasks. In the JMPF scheme, the original feature space is transformed into a compactly pre-clustered feature space, via a trained rotation matrix. The rotation matrix is obtained through an iterative quantization process, where the input data belonging to different classes are clustered to the respective vertices of the new feature space with maximum purity. In the new feature space, orthogonal hyperplanes, which are employed at the split-nodes of decision trees in random forests, can tackle the clustering problems effectively. We evaluated our proposed method on public benchmark datasets for regression and classification tasks, and experiments showed that JMPF remarkably outperforms other state-of-the-art random-forest-based approaches. Furthermore, we applied JMPF to image super-resolution, because the transformed, compact features are more discriminative to the clustering-regression scheme. Experiment results on several public benchmark datasets also showed that the JMPF-based image super-resolution scheme is consistently superior to recent state-of-the-art image super-resolution algorithms. Keywords— Random forest, regression and classification, image super-resolution, ridge regression.
منابع مشابه
Improving Super-resolution Techniques via Employing Blurriness Information of the Image
Super-resolution (SR) is a technique that produces a high resolution (HR) image via employing a number of low resolution (LR) images from the same scene. One of the degradations that attenuates performance of the SR is the blurriness of the input LR images. In many previous works in the SR, the blurriness of the LR images is assumed to be due to the integral effect of the image sensor of the im...
متن کاملSuper-resolution of Defocus Blurred Images
Super-resolution is a process that combines information from some low-resolution images in order to produce an image with higher resolution. In most of the previous related work, the blurriness that is associated with low resolution images is assumed to be due to the integral effect of the acquisition device’s image sensor. However, in practice there are other sources of blurriness as well, inc...
متن کاملRobust Fuzzy Content Based Regularization Technique in Super Resolution Imaging
Super-resolution (SR) aims to overcome the ill-posed conditions of image acquisition. SR facilitates scene recognition from low-resolution image(s). Generally assumes that high and low resolution images share similar intrinsic geometries. Various approaches have tried to aggregate the informative details of multiple low-resolution images into a high-resolution one. In this paper, we present a n...
متن کاملA Deep Model for Super-resolution Enhancement from a Single Image
This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...
متن کاملافزایش تفکیکپذیری تصویر با استفاده از مدل لبهی تحلیلی
Assuming having only one low-resolution image, the study aims to obtain an equivalent image with a higher resolution. This problem is usually referred to as “Super-resolution”. Since the number of unknown target values is far more than that of known values given in the input image, the super-resolution is a severely ill-posed problem. In this paper, a model is developed in order to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1708.09200 شماره
صفحات -
تاریخ انتشار 2017